Tiedeuutiset

Ilmatieteen laitoksessa tehdään korkeatasoista ilmakehä- ja meriaiheista tutkimusta. Vuosittain julkaistaan noin 300 kansainvälisesti ennakkotarkastettua julkaisua.


Tiedeuutisten tavoitteena on kertoa Ilmatieteen laitoksen tutkimuksista ja tutkimusten tärkeimmistä tuloksista kansantajuisesti. Näistä ja muusta Ilmatieteen laitoksen tiedeaiheista twiitataan myös @IlmaTiede-twitterissä.

« Takaisin

Koneoppimisesta apua ukkosten ennustamisessa sekä ukkosilmaston tutkimuksessa

Koneoppimisesta apua ukkosten ennustamisessa sekä ukkosilmaston tutkimuksessa

Monien alojen valtaamasta koneoppimisesta voi olla hyötyä myös ilmastotieteissä. Uudessa julkaisussa on käytetty suuria opetusaineistoja hyödyntäviä keinotekoisia neuroverkkoja ukkosten ennustamiseen.

Ukkosten tarkka ennustaminen on erittäin haastavaa, sillä ukkospilvien kehittymiseen liittyy moninaisia fysikaalisia tekijöitä ja niiden monimutkaisia riippuvuussuhteita. Numeeristen sääennustusmallien merkittävästä kehityksestä huolimatta ukkosten tarkan ajankohdan ja paikan ennustaminen menee usein pieleen. Ilmastomallleissa nämä pienen mittakaavan sääilmiöt ovat vielä huonommin kuvattuna, sillä karkeahilaiset ilmastomallit eivät kykene mallintamaan niitä suoraan, vaan jäljittelevät niiden vaikutusta ilmakehään yksinkertaistavien ns. "parametrisointien" kautta. Tämän takia on vaikea sanoa, miten ilmastonmuutos tulee vaikuttamaan ukkosiin esimerkiksi Suomessa.

Äskettäin julkaistussa tutkimuksessa käytettiin neuroverkkoja ukkosten ennustamiseen ns. uusanalyysidatasta, jossa yhdistyvät havainnot sekä malliennusteet. Neuroverkot ovat luokka koneoppimisalgoritmeja ja oppivan tekoälyn muoto, jossa hyvinkin monimutkaisia ja epälineaarisia ongelmia voidaan ratkaista antamalla algoritmin oppia säännönmukaisuuksia jostakin aineistosta. Tässä työssä opetusaineistona käytettiin Suomen salamapaikannushavaintoja vuosilta 2002 - 2014. Algoritmille annettiin syötteenä erilaisia fysikaalisia ennustesuureita eli prediktoreita, jotka mittaavat ukkosille otollisia tekijöitä, kuten ilmakehän epävakautta sekä alailmakehän kosteutta. Näistä algoritmi oppi ennustamaan ukkosen todennäköisyyttä 0 - 6 tunnin päähän. Kokeilu oltiin suunniteltu niin, että ukkosen ennustusparametreja lisättiin yksi kerralla algoritmiin kunnes suorituskyky ei enää parantunut. Tällä tapaa prediktorit saatiin tärkeysjärjestykseen ja malli kasvatettua sopivan monimutkaiseksi.

Lopullinen neuroverkko käytti jopa 14 parametria. Paras parametri oli sääpäivystyksessä melko yleisesti käytetty ukkosprediktori, mutta mukaan tuli myös parametreja, joita käytetään harvemmin. Esimerkiksi toiseksi tärkein parametri oli jokseenkin yllättävä; keski-troposfäärin suhteellinen kosteus osoittautui nimittäin hyvin merkittäväksi tekijäksi ukkosten (salamoinnin) esiintyyvyden kannalta Suomessa, mutta perinteiset ukkosindeksit eivät huomioi tätä mitenkään. Useaa parametria hyödyntävän neuroverkon suorituskyky oli jopa 30 % parempi kuin paras yksittäinen indeksi.

Seuraavaksi tutkijat aikovat käyttää menetelmää pohjoismaisen ukkosklimatologian määrittämiseen reanalyysidatasta. Suunnitteilla on myös kokeilla neuroverkkomenetelmän hyödyntämistä numeeristen sääennustusmallien sisällä.

Lisätietoja:

Tutkija Peter Ukkonen, puh. 0400 344 153, etunimi.sukunimi@fmi.fi
Tutkija Antti Mäkelä, puh. 050 3011988, etunimi.sukunimi@fmi.fi

Ukkonen, Peter, Agostino Manzato, and Antti Mäkelä. "Evaluation of thunderstorm predictors for Finland using reanalyses and neural networks." Journal of Applied Meteorology and Climatology 56.8 (2017): 2335-2352.

http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-16-0361.1


Tiedeuutisten arkisto

Yhteyshenkilöt

  • Tutkimus ja menetelmäkehitys
    tutkimusjohtaja Yrjö Viisanen
    puh. 029 539 5400
  • Tutkimushallinnon koordinaattori Anna Salonen
    puh. 029 539 6002
  • Tiedeuutiset
    viestintäasiantuntija Eija Vallinheimo
    puh. 029 539 2231

IlmaTiede-twitter